183 research outputs found

    Filamentous and non-filamentous bulking of activated sludge encountered under nutrients limitation or deficiency conditions

    Get PDF
    Although the limitation or deficiency of nutrients, such as nitrogen (N) and phosphorus (P), has been one of the frequently reported factors causing filamentous or non-filamentous bulking of activated sludge, the mechanisms are still unclear. In this work, the long-term effects of N and P limitation or deficiency on sludge settleability and bioflocculation characteristics were investigated in six sequencing batch reactors (SBRs) fed with wastewater with different nutrient availability. The sludge volume index (SVI), microbial community structures, intracellular poly-β-hydroxyalkanoates (PHAs) and extracellular polymeric substances (EPS) were characterised over time. Bulking was not observed in SBRs with N limitation or deficiency, in which SVI remained below 150. mL/g. In contrast, bulking was encountered in those reactors with P deficiency. The occurrence of non-filamentous bulking was associated with a higher carbohydrates fraction and a lower proteins fraction in EPS. In the case of filamentous bulking, SVI correlated negatively with the amount of PHAs. Our experimental data support the hypothesis that the occurrence and/or the type of bulking in activated sludge could be affected by the combination of kinetic selection, microbial storage, as well as the EPS composition

    Synergistically enhancing the electrical conductivity of carbon fibre reinforced polymers by vertical graphene and silver nanowires

    Get PDF
    Increasing the electrical conductivity of carbon fibre reinforced polymers (CFRPs) holds great promises for a range of applications, such as removing the need for metallic meshes in the protection against electromagnetic interference and lightning strikes. Herein, a hybrid method of improving the electrical conductivity of CFRPs by functionalizing carbon fibres with vertical graphene (VG) and modifying the matrix with silver nanowires (AgNWs) is introduced. The results revealed that the hybrid method increased the through-thickness and the in-plane electrical conductivities by almost 38 times and 39%, respectively, without adversely affecting mechanical properties. Finite element modelling revealed that the unprecedented synergy is due to the significant reduction in the contact resistance between carbon fibres by the combination of VGs on the fibres and the AgNWs in the matrix. Computational modelling showed that the electrical conductivity increase can reduce the joule heat density by around one thousand times under simplified lightning strike conditions

    The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system

    Get PDF
    Poly-beta-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms. (C) 2014 Elsevier Ltd. All rights reserved

    Network analysis of water-related ecosystem services in search of solutions for sustainable catchment management: A case study in Sutlej-Beas River systems, India

    Get PDF
    Hydrological processes and ecosystem interactions are instrumental in sustaining local populations by providing various water-related ecosystem services (ES). Numerous studies gave priority to the theories and methods of building networks that emphasized different stakeholders. However, little study has examined the complex relationships among water-related ES themselves and how relevant human activities affect ES networks. To narrow this gap, in this study we quantified four critical water-related ES (flood mitigation, hydropower production, soil retention, and water conservation), set up six ES network types based on the synergy relationship, and further explored the effect of human activities on these networks. The results showed that among six ES network categories, networks with four fully linked ES occupied a large percentage of 23.20% while the network with one central ES linking two others accounted for the lowest percentage (9.28%). Compared with other ES, soil retention tended to be less centralized within the networks. In addition, land use intensity was found to greatly influence the ES networks compared with other indicators, especially for less complex networks. Our results highlighted the importance of network analysis in searching solutions for sustainable catchment management

    A Triad of Lys12, Lys41, Arg78 Spatial Domain, a Novel Identified Heparin Binding Site on Tat Protein, Facilitates Tat-Driven Cell Adhesion

    Get PDF
    Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs) have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat–heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR) spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events

    Preprocessing differential methylation hybridization microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation plays a very important role in the silencing of tumor suppressor genes in various tumor types. In order to gain a genome-wide understanding of how changes in methylation affect tumor growth, the differential methylation hybridization (DMH) protocol has been developed and large amounts of DMH microarray data have been generated. However, it is still unclear how to preprocess this type of microarray data and how different background correction and normalization methods used for two-color gene expression arrays perform for the methylation microarray data. In this paper, we demonstrate our discovery of a set of internal control probes that have log ratios (M) theoretically equal to zero according to this DMH protocol. With the aid of this set of control probes, we propose two LOESS (or LOWESS, locally weighted scatter-plot smoothing) normalization methods that are novel and unique for DMH microarray data. Combining with other normalization methods (global LOESS and no normalization), we compare four normalization methods. In addition, we compare five different background correction methods.</p> <p>Results</p> <p>We study 20 different preprocessing methods, which are the combination of five background correction methods and four normalization methods. In order to compare these 20 methods, we evaluate their performance of identifying known methylated and un-methylated housekeeping genes based on two statistics. Comparison details are illustrated using breast cancer cell line and ovarian cancer patient methylation microarray data. Our comparison results show that different background correction methods perform similarly; however, four normalization methods perform very differently. In particular, all three different LOESS normalization methods perform better than the one without any normalization.</p> <p>Conclusions</p> <p>It is necessary to do within-array normalization, and the two LOESS normalization methods based on specific DMH internal control probes produce more stable and relatively better results than the global LOESS normalization method.</p
    corecore